Depositional Sequence and Lithostratigraphic Units of Southern Niger Delta, Nigeria, from Gamma Ray and Electric Logs

Eke, Peter Ogochuku

Abstract— Gamma ray and electrical resistivity/spontaneous potential logs of Southern Niger Delta of Nigeria, obtained from the Directorate of Petroleum Resources (DPR) Nigerian, has been used to analyze the depositional sequence and the lithostratigraphic unit of the sedimentary unit of the basin lying between the depths of 2,100 and 2,730 meters. By careful inspection of the logs and correlation of points, the nature of the log signatures have been used to identify the various sand units, depositional environment-types and trending of the sand bodies in a SW-NE direction. The results reveal genetic, amplified and hybrid sand bodies of point bars, barrier bars, shales, and delta marine fringe deposits that occurred under transgressive and regressive regimens.

Index Terms — Electric Logs, Depositional Environment, Gamma Ray Log, Genetic Sand Units, Amplified Sand Units, Hybrid Sand Units, Stratigraphic Correlation

1 INTRODUCTION

^THE Niger delta of Nigeria is one the most prolific hydro-L carbon reservoirs in the world as evident from the daily production rate in the area for the past twenty years [1]. The region has distinct tripartite lithostratigraphic sedimentary deposits which have been growing from the Paleocene to the Recent [2]. These consist of sandstones and shales, all of cyclic marine sequence and fluvial deposits in various environments and patterns. These sedimentary deposits have thickness ranges of zero, close to the sea shores, to over twelve thousand meters in the central part of the delta [3]. The structural and stratigraphic geology of the area has also been documented by several authors using different geophysical methods and more research is continuously done in the region to improve on its geological understanding and in exploiting the hydrocarbon. Most of these works are with seismic data with inputs supplemented from other geophysical methods depending on the need, such as environmental and facies analysis [4].

Geophysical methods that can be used for environmental and facies analysis include electric logs and gamma ray log which can be used for lithologic estimation, lithostratigraphic pattern sequence recognition and depositional environment analysis as demonstrated by [5], [6], [7]. They are among the major tools for geophysical exploration and subsurface determination by geologists. Telford *et al.*, [8] and Reynolds [9] states that they and other well logs can generally be used to infer subsurface conditions as structural, stratigraphic and depositional sequence; fractures and faults; determination of petro-

physical properties, rock strength, fluid content and types. The log signatures produced from the continuous measurement downhole of the earth's electric parameters of resistivity/spontaneous potential and radiations from rocks coupled with their genetic implications can be used to infer internal characteristics of porosity and permeability; and external characteristics of thickness, shape, trending, inter-bedding distribution, depositional environment and soil continuity of a sand body. As indicated in [10] and [11] when these sand units are compiled vertically, they represent a sequence of environments produced by a specific over-all sedimentary process such as regression or transgression and these depositional sequences can be used as a model for interpreting the sedimentary history of any stratigraphic section in a region. The shape of these trends can reveal sand bodies types as alluvial and barrier bars, distributary channel deposits and fringe sands. All these are based on the premise that a sand body deposited under a particular set of tectonic and depositional condition has a particular vertical sequence of sedimentation or properties, a distinct external form and a preferred distribution/orientation to the depositional framework of the basin [11].

In this work, electric and gamma ray logs from the central part of the Niger delta of southern Nigeria lying between the depths of 2,100 and 2,730 meters has been used to interpret the external depositional features of the formations and correlate the general trending of the sand units in the study area based on the above premise.

2 GEOLOGY AND LITHOLOGY OF STUDY AREA

The structural and stratigraphic geology of the Niger Delta (Fig. 1) has been discussed by several authors [12], [13], [14]. The sediments cover an approximate area of 105,000 square kilometers according to [3] with deposit thickness of over 12,000 meters in some regions. The sediments form three major formations whose evolution were controlled by pre- and syn-sedimentary tectonics as described by [12], [15], 16] with JJSER © 2020

http://www.ijser.org

Peter Ogochuku Eke is a Senior Lecturer in the Department of Physics, Ignatius Ajuru University of Education, Port Harcourt, Nigeria. E-mail: author_peter.eke@iaue.edu.ng

composition of sands, silts, clay and shales.

The oldest deposits in this region, formed during the Paleocene age, consist of; shales, turbidite sands and small amounts of silt and clay with thickness of over 7,000 meters in some region [17]. The Agbada Formation, formed in the Eocene age with marine facies of about 3,700 meters thickness, is the major oil and natural gas-bearing facies in the basin. The younger and topmost formation, deposited during the Oligocene, is the Benin Formation and is composed of continental flood plain sands and alluvial deposits with estimated thickness of 2,000 meters.

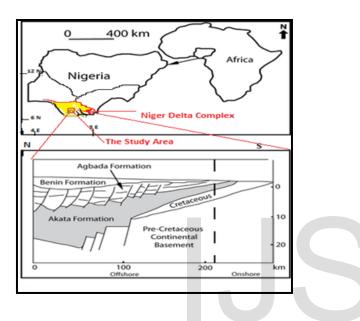


Fig.1: Location and Lithostratigraphy of the Niger Delta (modified from [16], [18])

Three major depobelts, with the three cycles of overall regression sequence, were recorded throughout these periods of depositions as the sediments change from deep sea mud sized grains to fluvial denser sand sized grains [3]. The oldest rock in the region is composed of basalt which forms the oceanic basement rocks. The dominant geological structures are thrust faults, diapers, syncline and anticline bodies with concentric facies elements [14], [19], [20].

3 MATERIAL AND METHOD

This work used electric well-logs of resistivity and spontaneous potential logs and gamma ray logs of five locations in the southern Niger Delta of Nigeria obtained from the Directorate of Petroleum Resources (DPR) Port Harcourt.

Resistivity operation is based on ohms law from which the apparent resistivity for a non-homogenous formation and from [9] is

$$a = R K$$

1.

Where; $R = \delta V/I$, *V* is the applied voltage, *I* is the current through the formation and *K* is the geometric factor which depends on the configuration used.

The Spontaneous Potential log is based on the theory that the

SP signature for sand and shale formations is a function of the electrochemical (diffusion) potential caused by the combination of the liquid-junction potential and membrane potential of the system and the electro-kinetic (shale) or flow potential due to the passage of mud filtrate into the permeable formation. Accordingly, [9] explains that these two potentials in formations are recorded as

$$E_{d} = -RT \frac{[I_{a} - I_{c}]}{nF[I_{a} + I_{c}]} \ln C_{1} / C_{2}$$
2

And when
$$I_a = I_{c_r}$$

 $E_s = -\frac{RT}{nF} \ln C_1 / C_2$

 I_a and I_c , are the mobilities of the anion and cation. *R* is the universal gas constant, *T* the absolute temperature, *n* the ionic valence, *F* Faraday's constant, C_1 and C_2 are the solution concentrations.

3

Gamma rays record the total radiation present in rocks and are used to determine the shale content in formations as radioactive minerals tend to concentrate in them.

The values of these logs can be used to obtain the internal formation characteristics of permeability and porosity and other related properties while their signature in formations can be used to obtain the external characteristics of trending, thickness, shape, interbedding distribution and formation correlation. The methodology adopted in obtaining the external formation characteristics of the fields, were by careful examination of the resistivity, SP and gamma ray curve shapes of the sand bodies down the borehole from which the depositional sequence and processes of formation were inferred. Funnel shaped, bell shaped, serrated shaped, cylindrical shaped and other shapes at various depths were identified and interpreted accordingly as sands, shales and sandy-shales, and their depositional environmental features/conditions, thickness and trending as in [5], [9], [10], [21].

4 RESULTS AND DISCUSSION

Figure 2 shows the identified depositional environments for the study area that includes their thickness, depth of occurence and type of sand unit. By careful examination of the log signatures, we can identify the following classes of deposited sand units; genetic sand units, amplified sand units and hybrid sand units.

International Journal of Scientific & Engineering Research Volume 11, Issue 5, May-2020 ISSN 2229-5518

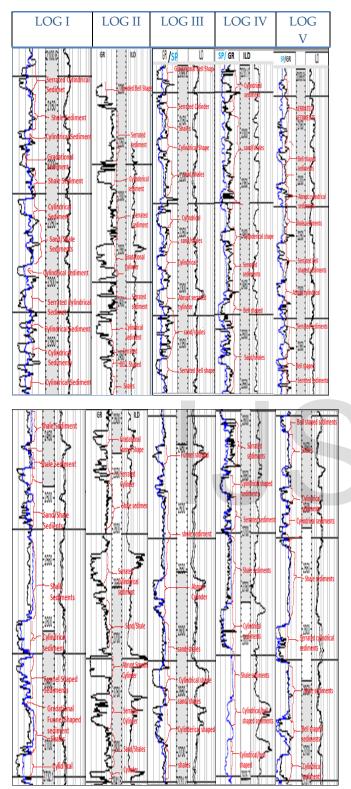


Fig. 2: Depositional Environments from Log Signatures for the study area.

The genetic sand unit Formations deposited during a single depositional regimen that resulted in transgressive deltamarine fringe build-up sand units of alluvial point bars, barrier bars and marine fringe deposits can be identified in the log signatures as either smooth or serrated funnel and bell shaped signatures which can be seen in the regions identified in the logs as shown in Table 1.

-	Log	Depth/m	Log Signa- ture Shape	Descriptive Environ- ment	
I	1	2140-2160	Serrated	Shale Sediments	
		2210-2235	Serrated	Shale Sediments	
		2250-2285	Serrated	Point Bar	
		2295-2325 2425-2480 2480-2495	Gradational Bell Shape	Transgressive Sand on Unconformity	
			Serrated	Shale sediments	
		2625-2660	Bell shaped	Barrier bar	
		2020 2000	Gradational funnel	Point bar	
	2	2240-2270	Serrated	Sand/shales	
		2300-2345	serrated	Sand/shales	
		2510-2535	Gradational	Point bar	
		2550-2610	Serrated	Sand/shales	
		2650-2715		Sand/shales	
		2795-2840		Shales	
			Serrated		
I	3	2320-2370	Serrated	Sand/shales	
		24550-2470	Funnel shaped	Point bar	
ſ	4	2255-2345	Serrated	Sand/shales	
		2410-2460	Serrated	Sand/shales	
		2670-2770	Serrated	Sand/shales	
		2810-2850	Serrated	Sand/shales	
	5	2100-2155	serrated	Sand/shales	

2165-2175	bell shape	Point bar	
2420-2435	bell shape	Point bar	
2530-2595	serrated	Sand/shales	
2675-2700	serrated	Sand/shales	
2675-2730	funnel shape	Point bar	_

The amplified sand unit Formations formed as aggradational superposed sands deposited during reoccurrence of particular depositional regimen can be identified as serrated funnel shaped log signatures appearing as point bars and turbidity buildup graded beds appearing as cylindrical shaped signatures as can be seen at depths shown in Table 2 for the various logs.

Table 2: Descriptive Environment and Log Signature Shapes at Various Depths for Amplified Sand Units

Log Depth/m		Log Signa-	Descriptive Environ-	
		ture Shape ment		
1 2115-2140		Serrated Cyl-	Marine Fringe Buildup	
	2160-2210	inderical	Sands	
	2285-2295	Cylindrical	Turbidity Buildup	
	2350-2375	Cylindrical	Sands	
	2595-2625	Cylindrical	Alluvial Point Bar	
	2710-2732	Cylindrical	Alluvial Point Bar	
		Cylindrical	Turbidity current build	
up sands				
		T	Alluvial Point Bar	
2	2220-2235	Cylinderical	Turbidity current	
	2270-2290	Cylinderical	buildup sand	
	2345-2365	Serrated	Turbidity current build	
2450-2465		Funnel	up sands	
	2540-2550	shaped	Delta marine fringe	
	2610-2650	Serrated cyl-	buildup sands	
	2715-2755	inderical	Alluvial point bar	
		Serrated cyl-	Delta marine fringe	
		inderical	buildup sand	
		Cylinder	Turbidity current build	
			up sands	
			Alluvial point bar	
3	2100-2120	Cylinderical	Turbidity current	
	2120-2150	Serrated bell	buildup sands	
	2170-2180	shape	Barrier bar	
	2555-2575	Cylinderical	Turbidity current	
2650-2615		Cylinderical	buildup	
		Cylinderical	Alluvial point bar	
			Alluvial point bar	
4	2460-2500	Bell shaped	Barrier bar	
			·	

	2650-2670	Cylinderical	Alluvial point bar	
2770-2810		Cylinderical	Delta marine	
	2850-2927	Cylinderical	Delta marine	
5 2435-2465		Cylinderical	Alluvial point bar	
2435-2500		Serrated cyl-	Delta marine fringe	
2700-2730		inderical	buildup sand	
		Cylinderical	Alluvial point bar	

The hybrid sand unit Formations of superposed sand and shales deposited in more than one kind of depositional regimen appears in the log signatures as serrated sand units identified at depths shown in Table 3.

Table 3: Descriptive Environment and Log Signature Shapes at Various Depths for Hybrid Sand Units

Log Depth/m		Log Signature	Descriptive Environment
		Shape	
2	2425-	Cylinderical	Progradational alluvial
	2445		over delta marine sands

Figure 6 shows a correlation of the sand bodies in the various wells and their trending in a SW-NE direction of the study area. This reveals the general lithostratigraphy of the study area between depths of 2100 m and 2730 m which are identified with the numbers 1 to 7.

IJSER © 2020 http://www.ijser.org

Inte ISSI <mark>SW</mark>	AL 17 10 PTL 01			NE 0146500
	0012 [SST0] 500 09 10 1181 101 101 1000 09 800 1000000 100 100	0071 [SSTN0] SSTN0 99 100 91 1094 1006/08 11 1000	0U2[55N0] 5570 9 10 U 104 133600 #1 000	01.14 (SSTV0 SSTV0 59 10 St 1991 1303(00 41 1033) URINALIZZE SSTV0
	ROS 2055	07 U R08		08 U 808
XII.	500 500	11 S 14	5	
3 * {	_ <_ = - <u>3</u>		<u>3</u> = ₹	
		NR 2 1		²⁰ 5 2 2
				= 3- 2
Munichpane 1		2 4 🗳		
			10 E 16 E	™ 2
Š X	AMA A	AL MULT		2 1 4
HALL R	M.M.		20 X	
And in case of the local division of the loc	100 million and a second second		×2.	E 24
3 4 5	I A A	33		
			× Z = 5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
21				
S m S	North Contraction			
× 4	×) }	· · · · · · · · · · · · · · · · · · ·		≝ 6
MAL IN		2=52		
28 J	™ S ₁ / }		[™] < < < < < <	

Fig.6: Correlation of Wells in a SW-NE direction showing the Lithostratigraphic trending in the study area

4 CONCLUSION

This work has identified the depositional environments and the general lithostratigraphic trending, between the depths of 2,100 and 2,730 meters, in the study area using electric logs of resistivity/spontaneous potential and gamma ray logs from five wells. The sand units identified are genetic, amplified and hybrid sands with descriptive environments of point bars, barrier bars, delta marine fringe sediments of sand and shales, deposited in turbidity current buildups, transgressive and regressive regimes.

ACKNOWEDGMENT

The authors wish to thank the Directorate of Petroleum Resources (DPR) Nigeria, for the electric and gamma ray logs used for this work.

REFERENCES

- P.O. Eke, F.N. Okeke, and P.O. Ezema, "Improving the Geological Understanding of the Niger Delta Basin of Nigeria Using Airborne Gravity Data," *International Journal of Geography and Geology*, vol. 5 no. 5, pp. 97-103, 2016.
- [2] P.J. Merki, "Structural Geology of the Cenozoic Niger Delta," In: Dessauvagie, T. F. J. and Whiteman, A. J. (eds.), African Geology, University of Ibadan Press, Nigeria, pp. 635-646, 1972.
- [3] A.A. Avbovbo, "Tertiary lithostratigraphy of Niger delta," American Association of Petroleum Geologist Bulletin, vol. 62, pp. 295-306, 1978.
- [4] H.G. Readings, "Sedimentary Environments and Facies," Backwell Scientific Publication, Oxford London, pp. 97-177, 1978.
- [5] E. Oomkens, "Depositional Sequences and Distribution in a Deltaic Complex.," *Geology en Mijnbouw* vol. 46, pp. 265-278, 1967.
- [6] R.C. Selley, "Ancient Sedimentary Environments and their Diagnosis," Chapman and Hall Ltd, London, PP. 1-69, 1989.
- [7] J.E. Calderon, and J. Castagna, "Porosity and Lithologic Estimation Using Rock Physics and Multiattribute Transforms in the Balcon Field, Columbia-South America" *Expanded Abstracts*, 75th SEG Annual International Meeting, pp. 444-447, 2005.
- [8] W.M. Telford, L.P. Geldart, and R.E. Sherriff, "Applied Geophysics," Cambridge University Press, New York, 1990.
- [9] J.m. Reynolds, "An Introduction to Applied and Environmental Geophysics," John Wiley and Sons, UK, 2011.
- [10] G.S. Visher, "Use of Vertical Profile in Environmental Reconstruction,". AAPG Bulletin, vol. 49, pp. 41-67, 1965.
- [11] B.W. Wilson, and R.H. Nanz, "Sand Conditions as indicated by Self-Potential Log," EPR Memorandum Report 51, Houston Texas.
- [12] B.D. Evamy, J. Haremboure, P. Knaap, F.A. Molloy and PH. Rowlands, "Hydrocarbon Habitat of Tertiary Niger Delta," *American Association of Petroleum Geologist Bulletin*, vol. 62, pp. 1-39, 1978.
- [13] K.C. Short, and A.J. Stauble, "Outline of geology of Niger Delta," American Association of Petroleum Geologist Bulletin, vol. 51, pp. . 761-799, 1967.
- [14] F. Corredor, J.H. Shaw, and F. Bilotti, "Structural Styles in the Deep-water fold and Thrust Belts of the Niger Delta," *American Association of Petroleum Geologist Bulletin*, vol. 89 no. 6, pp. 753–780, 2005.

- [15] J.E. Ejedawe, "Patterns of Incidence of Oil Reserves in Niger Delta Basin". American Association of Petroleum Geologists Bulletin, vol. 65, pp. 1574-1585, 1981.
- [16] P. Stacher, "Present Understanding of the Niger Delta Hydrocarbon Habitat," In, Oti, M. N., and Postman Eds., Geology of Deltas: Rotterdam, A. A., Balkema, pp. 257-267, 1995.
- [17] M..L.W. Tuttle, R.R. Charpentier and M.E. Brownfield, "The Niger Delta Petroleum System: Niger Delta Province, Nigeria, Cameroon, and Equatorial Guinea, Africa," United States Geological Survey, Open-File Report 99-50-H, pp. 1-65, 1999.
- [18] Google Maps, "Google Maps of Niger Delta, Nigeria and Africa". https://www.google/maps. Retrieved: 22/4/2020.
- [19] H. Kulke, "Nigeria, In, Kulke, H., Ed., Regional Petroleum Geology of the World. Part II: Africa; America; Australia and Antarctica," *Berlin, Gebrüder Borntraeger*, pp. 143-172, 1995.
- [20] J.R.L. Allen, "Late Quaternary Niger Delta and Adjacent Areas, Sedimentary Environments and Lithofacies," AAPG Bull., vol. 49, pp. 547-600, 1965.
- [21] P.A. Dickey, "Petroleum Development Geology," Pennwell Publishing Company Oklahoma, 1981.

IJSER

IJSER © 2020 http://www.ijser.org